
Journal of Fluids and Structures (2001) 15, 691}715
doi:10.1006/j#s.2000.0372, available online at http://www.idealibrary.com ondoi:10.1006/j#s.2000.0372, available online at http://www.idealibrary.com on
NUMERICAL SIMULATION OF THE FLOW INDUCED
BY A TRANSVERSELY OSCILLATING INCLINED

ELLIPTIC CYLINDER

S. J. D. D'ALESSIO

Department of Applied Mathematics, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

AND

S. KOCABIYIK*

Department of Mathematics and Statistics, Memorial University of Newfoundland
St. John+s, Newfoundland, Canada A1C 5S7

(Received 8 September 1999, and in "nal form 10 October 2000)

The unsteady #ow past an inclined elliptic cylinder which starts translating and oscillating
impulsively from rest in a viscous #uid is numerically investigated for large Reynolds number.
The #ow is incompressible and two-dimensional, and the oscillations are harmonic. These
oscillations are allowed in a direction perpendicular to the uniform oncoming #ow having
a magnitude which is less than or equal to the constant translational velocity. The investigation
is based on an implicit "nite di!erence/spectral scheme for integrating the unsteady
Navier}Stokes equations expressed in a stream function/vorticity formulation. Present calcu-
lations are performed at a su$ciently large oscillation amplitude to induce separation. The
e!ect of the maximum oscillatory-to-translational velocity ratio and of the angle of inclination
on the laminar asymmetric wake evolution has been studied for a Reynolds number R"103.
The object of this study is to examine the e!ect of increase of velocity ratio on the near-wake
structure as well as the hydrodynamic forces acting on the cylinder. Vortex dynamics close
behind the cylinder are a!ected by the changing acceleration of the cylinder. An interesting
phenomenon has been observed in the #ow patterns depending upon the velocity ratio and the
angle of inclination. A switch over in the nature of the #uctuations of the drag coe$cients has
been also observed with the increase of angle of inclination. ( 2001 Academic Press
1. INTRODUCTION

THIS PAPER EXAMINES in an initial way the transverse vibrations of an inclined elliptic
cylinder in the presence of an oncoming uniform stream. Not only do these transverse
oscillations have practical consequences relating to the design of engineering structures, but
from a fundamental standpoint the forced transverse oscillations of elliptic cylinders form
an important and relatively unexplored class of oscillatory #ows. An extraordinary feature
of previous work is the enormous e!ort that has been expended on understanding circular-
cylinder #ow, with its attendant complex interplay between boundary-layer development
and near-wake dynamics. For #ows induced by an elliptic cylinder performing translational
oscillations perpendicular to its generators, references may be made only to the works of
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Davidson & Riley (1972), Okajima et al. (1975), Taneda (1977) and Badr & Kocabiyik
(1997). These studies were concerned with the case of purely translational oscillations of an
elliptic cylinder placed in a #uid and translational oscillations were allowed only about an
axis which coincides with either the major or minor axis of the ellipse except for Okajima
et al. For large values of a suitably de"ned Reynolds number, such a #ow induces a steady
streaming in the #uid that is con"ned to a thin boundary-layer region at the cylinder
surface. A collision of these steady-streaming boundary layers has been "rst predicted and
visualized by Davidson & Riley (1972), resulting in jets of #uid erupting symmetrically from
the elliptic cylinder surface along the axis of the vibration. The stability of a class of #ows
that exhibit steady streaming was considered by Hall (1984). In particular, he considered in
detail the stability of the #ow induced by the transverse oscillations of both circular and
inclined elliptic cylinders in a quiescent viscous #uid. In the case of cylinders of elliptic
cross-section, Hall found that for any given eccentricity the most unstable con"guration is
when the cylinder oscillates parallel to its minor axis. Badr & Kocabiyik (1997) carried out
a numerical study to calculate the symmetric #ow properties for a cylinder axis ratio of 0)6
when the Reynolds number ranges between 500 and 103. Their calculations were performed
within the range of su$ciently large oscillation amplitude to induce separation. It is noted
that #ows generated by oscillating elliptic cylinders share some common characteristics
with those of blu! bodies like circular cylinders. One of the most comprehensive studies on
a cylinder oscillating normal to the incident #ow is that of Williamson & Roshko (1988).
They reported, within a range of amplitude, a vortex pattern in which a set of vortex pairs
convect downstream but out to one side (the side depends on the history of the #ow) and
takes on the appearance of a jet rather than a wake.

To our knowledge, from an extensive literature survey, only one study has been done by
Okajima et al. (1975) on the problem of the #ow past an elliptic cylinder which is forced to
oscillate transversely to the oncoming uniform #ow when the cylinder is positioned
asymmetrically relative to the main #ow. The same problem is considered in the present
study. In the work of Okajima et al. the viscous #ow around both stationary and
transversely oscillating elliptic cylinders were calculated at R"40 and 80 by means of
a numerical solution of the Navier}Stokes equations. The application of their numerical
calculation is limited to low Reynolds numbers and some experiments have been carried out
to study the viscous #ow around an oscillating elliptic cylinder to provide information over
a wide range of Reynolds numbers: 404R42]103.

In the present work, we consider the two-dimensional #ow caused by an in"nitely long
elliptic cylinder set in motion impulsively which translates with uniform velocity; and also
undergoes a harmonic translational oscillation in the transverse direction to that of
translation. The cylinder is assumed to be inclined to the horizontal direction at an angle g.
The ellipse has major and minor axis of lengths 2a and 2b, respectively, and the cylinder
oscillates with the velocity ;

m
cosut, where u"2nf and f is the forced frequency of

oscillation. The Reynolds number is de"ned by R"2a;/l where a and l stand for the
semi-major axis length of the ellipse and the kinematic viscosity, respectively. The velocity
ratio a";

m
/;, the forcing Strouhal number X"au/;, angle of inclination g and the

minor-to-major axis ratio of the ellipse r"b/a serve as scaled control parameters. The goal
of the study is to investigate the e!ects of the maximum oscillatory-to-translational velocity
ratio and the angle of inclination on the #ow structure in the near-wake region as well as on
the hydrodynamic forces acting on the cylinder for a "xed Reynolds number of R"103 and
forcing Strouhal number of X"n. Numerical calculations are performed for moderate values
of time for the combinations: g"n/4 and a"0)5, 1)0 and for a"0)5 with g"n/4, n/2. The
minor-to-major axis ratio of elliptic cylinder for these cases is taken to be 0)5. Noticeable
changes in the near-wake and in the forces take place as a and g increase and are reported.
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The underlying assumption made in our study is that the #ow remains two-dimensional
and laminar. One can argue that for the large Reynolds number regime considered
three-dimensional e!ects and turbulence may signi"cantly alter the #ow. In fact, experi-
mental work conducted by Williamson (1988) for the case of a circular cylinder suggests that
a three-dimensional transition occurs for R'178. Szepessy & Bearman (1992) measured
a #uctuating lift on a thin section of a large aspect-ratio "xed-circular cylinder and found
that two-dimensional simulation schemes generally overestimate the root-mean-square
value of the #uctuating lift. This observation has been substantiated by Graham (1993), who
gathered numerical predictions for circular cylinder #ow and compared them with experi-
mental results. He found that above a Reynolds number of 150 the mean and #uctuating
forces were generally overpredicted, with largest di!erences occurring in the #uctuating lift.
It should also be noted that measured time histories of the #uctuating lift show a pro-
nounced amplitude modulation whereas simulated time histories mostly display a constant
amplitude, once the #ow has settled. Although physically the wake may be three-dimen-
sional, we believe that it can be represented reasonably well by a two-dimensional model in
the near-wake region which this study focuses on. On the evidence that spanwise correla-
tions of forces, wake velocities, etc. all increase with transverse cylinder vibration at
a frequency at or near the vortex shedding [e.g., Toebes (1969), Ramberg & Gri$n (1976),
Novak & Tanaka (1977), Blackburn & Henderson (1999)] it is reasonable to suggest that
harmonic motion of a long cylinder seems to suppress the three-dimensionality and produce
#ows that are more two-dimensional than their "xed-cylinder counterparts, at least in the
near-wake region.

The investigation is based on the solution of Navier}Stokes equations in their
vorticity/stream function formulation via a "nite-di!erence method similar to that used
by Staniforth (1972) and D'Alessio et al. (1999). These studies use a Fourier spectral
method together with an implicit Crank}Nicolson time-marching procedure. The
problem of unsteady uniform #ow over a stationary inclined cylinder was investigated
by Staniforth (1972) and the validity of his solution is limited to high Reynolds numbers
and small times. D'Alessio et al., on the other hand, considered a uniform #ow past a
thin inclined elliptic cylinder under rotary oscillation, their method is also applicable to
cross-#ow and in-line oscillations. In their work, the numerical technique of Staniforth
(1972) was utilized successfully in computing the early development of the #ow for moderate
to high Reynolds numbers. It is noted that the #ow structures in these cases are di!erent
from the present case and that the following features in the wake as well as in the force
coe$cients occur in the present case: (i) the production of double or triple co-rotating
vortex pairs in the near wake, and (ii) a switch-over in the nature of the #uctuations of the
drag coe$cient.

2. GOVERNING EQUATIONS AND METHOD OF SOLUTION

We are concerned with the two-dimensional #ow generated by an in"nitely long elliptic
cylinder whose axis coincides with the z-axis placed in a viscous incompressible #uid. The
cylinder is inclined at an angle g to the x-axis and the major and minor axes are along the
axes of x and y, respectively. The free stream, far from the cylinder surface, exhibits uniform
velocity ; in the horizontal direction. Initially, the cylinder is at rest and at time t"0 it
suddenly starts to oscillate in transverse direction to that of the uniform #ow with velocity
<(t)";

m
cosut as shown in Figure 1.

A suitable frame of reference which translates and oscillates with the cylinder is em-
ployed. In this frame the unsteady dimensionless equations for a viscous incompressible



Figure 1. Coordinate system and #ow con"guration.
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#uid in primitive variables can be written in vector form as

Lv

Lq
!v3w"!$Ap#

1

2
Dv D2B!

2

R
$3w#a, (1)

$ ' v"0. (2)

Here q is the nondimensional time de"ned by q";t/a and for the two-dimensional #ow
taking place in the xy-plane, the velocity v"(u, v, 0) and the vorticity x"$3v"(0, 0, f).
The term a is the translational acceleration arising from the noninertial reference frame of
the vibrating cylinder; speci"cally this acceleration is given by !<Q (q) (sin g, cos g, 0) where
< (q)"a cosXq is the nondimensional oscillatory velocity of the cylinder and the dot
denotes di!erentiation with respect to time q.

Mathematically, an initial/boundary-value problem for two-dimensional Navier}Stokes
equations must be solved. This solution is carried out in an elliptic coordinate (m, h) system
de"ned by the transformation

x#iy"cosh [(m#m
0
)#ih], (3)

with the origin at the centre of the cylinder. Here the constant m
0

is de"ned by
m
0
"tan h~1 (b/a) and m"0 de"nes the surface of the cylinder. The governing equations in

the elliptic coordinate system are

L2t
Lm2

#

L2t
Lh2

"M2f, (4)

Lf
Lq

"

1

M2 C
2

RA
L2f
Lm2

#

L2f
Lh2B#A

Lt
Lh

Lf
Lm

!

Lt
Lm

Lf
LhBD. (5)

The dependent variables t and f in these equations are the dimensionless stream function
and scalar vorticity, respectively, which are de"ned in terms of the usual dimensional stream
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function t* and vorticity f* by t*";at and f*";f/a and M refers to the metric of the
transformation (3) given by

M2"
1

2
[cosh 2 (m#m

0
)!cos2h]. (6)

The dimensionless velocity components (vm, vh) in the directions of increase of (m,h) are given
by

vm"!

1

M

Lt
Lh

, vh"
1

M

Lt
Lm

, (7)

and the vorticity f is de"ned by

f"
1

M2 C!
L
Lh

(Mvm)#
L
Lm

(Mvh)D. (8)

It is noted that if u and v denote the nondimensional velocities in the "xed and noninertial
frames, respectively, then we have that

u"v#(a sin g cos (Xq), a cos g cos (Xq))

and leads to equation (1). Thus, the stream function in the "xed frame tM is related to the
stream function in the noninertial frame t through

tM "t#a cos g cos (Xq)x!a sin g cos (Xq)y#C (q),

where C(q) refers to an arbitrary function of time. The vorticities in the two frames, on the
other hand, can easily be shown to be the same (i.e., fM"f). Using these along with the
conformal transformation given by equation (3) one can obtain the equations given by
equations (4) and (5). The conformal transformation applied is standard and has been used
in several studies [see for example D'Alessio et al. (1999)]. The boundary conditions for
q'0 and 04h42n are the no-slip and impermeability conditions at the solid surface, and
the free-stream conditions far away from it are given by

t"

Lt
Lm

"0 when m"0, (9)

Lt
Lm

P

1

2
em`m0 [sin (h#g)!a cos (Xq) cos (h#g)] as mPR, (10a)

Lt
Lh

P

1

2
em`m0[cos (h#g)#a cos (Xq) sin (h#g)] as mPR. (10b)

Here the cylinder oscillation enters through the parameter )"au/;. The conditions in
equation (10) lead to

tP1
2

em`m0 [sin (h#g)!a cos ()q) cos (h#g)] as mPR. (11)

As a consequence of condition (10) we must also have that

fP0 as mPR. (12)

It is well known that for moderate to high Reynolds number #ows, the e!ective viscous-
dominated regions are basically restricted near and downstream of the body of the cylinder.
Shed vortices weaken very slowly as they travel downstream, in fact they persist in the
narrow wake with a thickness of O (R~1@2) for hundreds of characteristic lengths of the body,
and then eventually the #ow becomes irrotational.
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All the dependent variables in the #ow domain must be periodic functions of h with
period 2n. Thus, in particular, the periodicity conditions for t and f are

t (m, h#2n, q)"t (m, h, q), f(m, h#2n, q)"f (m, h, q). (13)

Detailed derivations of equations and boundary conditions similar to the ones used in this
study were given in the works of Staniforth (1972) and D'Alessio et al. (1999) for the cases of
unsteady uniform #ow over a stationary inclined elliptic cylinder and a thin inclined elliptic
cylinder under rotational oscillation, respectively. This section brie#y summarizes the
equations and the boundary conditions. It is noted that the far-"eld conditions given by
equations (10a,b) di!er from the ones given in these studies because of the di!erences
between the reference frames as well as the cylinder motions. Also, the "rst condition of
equation (9) is di!erent from the one given by D'Alessio et al. due to the rotary oscillation of
the ellipse in their work.

The boundary conditions for the stream function on the cylinder surface are overspeci"ed
and there is no explicit boundary condition for the vorticity on the cylinder surface. In
principle, the surface vorticity can be computed from the known stream function by
applying equation (4), however, the large velocity gradient at the surface reduces the
accuracy of such computations. In this study, an integral condition is used to predict the
surface vorticity. The overspeci"ed local conditions can be utilized to obtain global vorticity
conditions, termed integral conditions, and these conditions are derived by applying
Green's identity for the Laplacian operator, namely

PP
V

(/ +2t!t +2/) d<"Q
S
A/

Lt
Ln

!t
Lt
LnBds (14)

to the #ow domain < outside the cylinder following the work by Dennis & Quartapelle
(1989) and Dennis & Kocabiyik (1991). Here boundary S of the #ow domain is the contour
of the cylinder itself together with a contour at a large distance from it and n refers to the
outward normal to the boundary S of the #ow domain and s is measured along it.
Condition (14) is utilized by taking / to be the harmonic functions
/"M1, e~nm cos nh, e~nm sin nh: n"1, 2,2N and using +2t"M2f from equation (4), it is
found, after use of equations (9) and (10) and some integration by parts, that

P
=

0
P

2n

0

M2f (m, h, q) dh dm"0, (15a)

P
=

0
P

2n

0

e~nmM2f(m, h, q) cos (nh) dhdm"nem0[sin g!a cos (Xq) cos g] d
1,n

, (15b)

P
=

0
P

2n

0

e~nmM2f (m, h,q) sin (nh) dhdm"nem0[cos g#a cos (Xq) sin g] d
1,n

(15c)

for all integers n51; d
m,n

is the Kronecker delta symbol de"ned by

d
m,n

"1 if m"n, d
m,n

"0 if mOn.

Finally, an initial condition is necessary to start the #ow. Boundary-layer theory for impul-
sively started #ows is used to provide this by utilizing the boundary-layer transformation

m"kz, t"kW, f"u/k, k"2(2q/R)1@2, (16)

which maps the initial #ow onto the scale of the boundary-layer thickness. This change of
variables removes the singularity in the vorticity at q"0 due to the impulsive start. We
emphasize that although boundary-layer coordinates are utilized, the full Navier}Stokes
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equations are to be solved and not the simpli"ed boundary-layer equations. In terms of
these boundary-layer coordinates the governing equations become

L2W
Lz2

#k2
L2W
Lh2

"M2
z
u, (17)

1

M2
z

L2u
Lz2

#2z
Lu
Lz

#2u"4q
Lu
Lq

!

k2

M2
z

L2u
Lh2

!

4q
M2

z
A
LW
Lh

Lu
Lz

!

LW
Lz

Lu
LhB , (18)

where M2
z
"[cosh2(kz#m

0
)!cos 2h] and the solution of these equations are now re-

quired subject to the conditions

W"

LW
Lz

"0 when z"0, (19)

P
=

0
P

2n

0

M2
z
u (z, h, q) dhdz"0, (20a)

P
=

0
P

2n

0

e~nkzM2
z
u(z, h, q) cos (nh) dhdz"nem0 [sin g!a cos (Xq) cos g] d

1,n
, (20b)

P
=

0
P

2n

0

e~nkzM2
z
u(m, h, q) sin (nh) dhdz"nem0[cos g#a cos (Xq) sing] d

1,n
(20c)

for all integers n51.The transformed Navier}Stokes equations (17) and (18) are solved
subject to equations (19) and (20) entirely in terms of the new variables (16). This is possible
if the Reynolds number is high enough, but for small R the boundary-layer thickness k soon
grows and it is then more realistic to continue the integration in the physical coordinate m so
that the grid size in the actual physical space does not become too large. The equations
governing the initial solution can be determined by setting q"0 and hence k"0 for any
value of R in equations (17) and (18). The equations for W

0
,W (z, h, 0) and u

0
,u (z,u, 0)

are

L2W
0

Lz2
"M2

0
u

0
,

1

M2
0

L2u
0

Lz2
#2z

Lu
0

Lz
#2u

0
"0, (21a,b)

where M2
0
"1

2
[cosh (2m

0
)!cos (2h)] is the value of M2

z
on the cylinder surface z"0. The

solutions of these equations satisfying equations (19) and (20) are

u
0
(z, h, 0)"

2

Jn

em0
M

0

[sin (h#g)!acos (h#g)] e~M
2
0z

2, (22a)

W
0
(z, h, 0)"

em0
M

0

[sin(h#g)!a cos (h#g)] [M
0
z erf (M

0
z)!

1

Jn
(1!e~M

2
0z

2)], (22b)

where erf(M
0
z) denotes the error function. This initial solution forms the starting point of

the numerical integration procedure.

3. COMPUTATIONAL METHOD OF SOLUTION

The Navier}Stokes equations (17) and (18) in terms of the variables (z, h) are solved by "nite
di!erences using a Gauss}Seidel iterative procedure with under-relaxation applied only to
the surface vorticity. The method is based on approximating the stream function using
a Fourier series expansion and is essentially a generalization of the method used by
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Staniforth (1972) that takes into consideration the e!ect of transverse cylinder oscillations;
therefore, this section only brie#y summarizes the equations and numerics. The computa-
tional domain bounded by 04z4z

=
and 0(h(2n, is discretized into a network of

¸]P grid points located at

z
i
"ih, i"0, 1,2,¸ where h"z

=
/¸, (23)

h
i
"ij, i"0, 1,2,P where j"2n/P. (24)

Here z
=

refers to the outer boundary approximating in"nity. Placing z
=

well outside the
growing boundary layer enables us to enforce the free-stream condition (10) along the line
z"z

=
. Expressed in terms of the boundary-layer coordinates (z, h) this condition becomes

e~kz
LW

Lz
P

1

2
em0[sin (h#g)!a cos (Xq) cos (h#g)] as zPR, (25a)

e~kz
LW

Lh
P

1

2k
em0 [cos (h#g)#a cos (Xq) sin (h#g)] as zPR. (25b)

We point out that the physical coordinate m"kz is a moving coordinate and hence the
outer boundary m

=
"kz

=
is constantly being pushed further away from the cylinder surface

at a rate which re#ects the growth of the boundary layer. For this reason we are justi"ed in
saying that the vorticity, by the mechanism of convection, does not reach the outer
boundary m

=
. It is noted that the grid is not uniform in the x or y directions. The spacing is

such that the grid points are spaced closer together near the surface and further apart at
larger distances. In addition, the adopted grid mesh is continually growing in time to
properly accommodate the vortex shedding process. Figure 2 illustrates how the grid
expands for the case of R"103 and g"n/4 for an ellipse having r"0)5 at times q"0)1
and 1. Shown are 10 equally spaced grid lines for 04z4z

=
. If z

=
is chosen to be large

enough then as time increases the outer boundary will expand and be far enough away that
no shed vortices will have reached it. If this is so, then we can correctly apply the condition
of zero vorticity along the outer boundary. Although shed vortices propagate faster than the
Figure 2. An illustration to show how the grid expands with time when R"103 and g"n/4: (a) q"0)1, and
(b) 1)0.
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rate of boundary-layer growth, they weaken as they travel downstream in the wake. Clearly,
as time increases we may encounter a problem whereby the vorticity reaches the boundary,
but for the cases and times considered in our study this is not the case.

We solve for the stream function by expanding it into a Fourier series given by

W (z, h, q)"
1

2
F
0
(z, q)#

=
+
n/1

(F
n
(z, q) cos nh#f

n
(z, q) sin nh). (26)

The equations governing the functions in equation (26) are

L2F
n

Lz2
!n2k2F

n
"s

n
(z, q), n"0, 1,2, (27a)

L2f
n

Lz2
!n2k2f

n
"r

n
(z, q), n"1,2, (27b)

where

s
n
"

1

n P
2n

0

M2u (z, h, q) cos nhdh, r
n
"

1

n P
2n

0

M2u (z, h, q) sin nhdh. (28a,b)

Boundary conditions for the Fourier components of W are

F
0
(0, q)"F

n
(0, q)"f

n
(0, q)"0,

LF
0

Lz
"

LF
n

Lz
"

Lf
n

Lz
"0 when z"0, (29)

and as zPR

e~kzF
0
P0, e~kz

LF
0

Lz
P0, (30a)

e~kzF
n
P

1

2k
em0 [sin g!a cos (Xq) cos g] d

n,1
, e~kz

LF
n

Lz
P

1

2
em0 [sin g!a cos (Xq) cosg] d

n,1
,

(30b)

e~kz f
n
P

1

2k
em0[cos g#acos (Xq) sin g] d

n,1
, e~kz

Lf
n

Lz
P

1

2
em0 [cos g#a cos (Xq) sin g] d

n,1

(30c)

for n"1, 2,2.
Further conditions satis"ed by the functions r

n
(z, q) and s

n
(z, q) can be obtained by

considering the properties of the solutions to equations (27a,b) together with their corre-
sponding boundary conditions (29) and (30). These conditions are of a global or integral
nature and are exact; they also play an important role in the determination of the surface
vorticity and are given by

P
=

0

s
0
(z, q) dh dz"0, (31a)

P
=

0

e~nkzs
n
(z, q) dz"em0 [sin g!a cos (Xq) cos g] d

1,n
, (31b)

P
=

0

e~nkz r
n
(z, t) dz"em0[cos g#a cos (Xq) sin g] d

1,n
. (31c)
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Equations (27a,b) at a "xed value of q are of the form

h@@ (z)!b2 h(z)"g(z), (32)

where b"nk and the prime refers to di!erentiation with respect to z. These ordinary
di!erential equations can be integrated using step-by-step formulae. The important point to
note here is that the particular marching algorithm to be used is dependent on
the parameter b. Dennis & Chang (1969) have found that most step-by-step procedures
become increasingly unstable as b becomes large. Hence, two sets of step-by-step methods
were utilized: one for b(0)5 while another one for b'0)5. The speci"c schemes used will
not be presented; however, these details can be found in Staniforth (1972). The vorticity
transport equation (18) is solved by "nite di!erences. Previous studies for the case of
a circular cylinder have also expanded the vorticity in a Fourier series. In this instance, the
metric given by M2"e2m is independent of h. In our problem the metric, given by equation
(6), depends on h and consequently complicates matters if expressed in a Fourier series.
Despite this, Patel (1981) and Badr (1994) for the case of inclined elliptic cases expanded the
vorticity in a Fourier series and numerically solved the resulting partial di!erential equa-
tions for the Fourier coe$cients. Badr (1994) carried out a very careful numerical study to
deal with purely oscillating viscous #ow past a stationary inclined elliptic cylinder. In his
work, rectilinear #ow oscillations are only allowed in the horizontal free-stream direction.

The scheme used to approximate equation (18) is very similar to the Crank}Nicolson
implicit procedure. Equation (18) may be rewritten in the form

q
Lu
Lq

"q(z, h, q), (33)

where

q(z, h, q)"
1

4M2
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4M2
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L2u
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#
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z
A
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Lh

Lu
Lz

!

LW
Lz

Lu
Lh B. (34)

It is the "nite-di!erence approximation to the time derivative that enables us to advance the
solution step-by-step in time. Assuming the solution at time q is known, let us advance the
solution to time q#*q by integrating equation (33). Integration by parts yields

uDq`*qq !P
q`*q

q
udq"P

q`*q

q
qdq, (35)

where *q is the time increment. If we approximate the integrals using the trapezoidal rule
this brings us to the expression

u (z, h, q#*q)"u (z, h, q)#
*q

2q#*q
[q (z, h, q#*q)#q (z, h, q)]. (36)

Since q (z, h, q#*q) depends on u(z, h, q#*q) and its derivatives the scheme is implicit.
Equation (36) is solved iteratively using the Gauss}Seidel procedure. All spatial derivatives
appearing in equation (34) are approximated using central di!erences. The boundary
conditions used in solving the vorticity transport equation include

u(z, h, q)"u (z, h#2n, q) (37)

and

u (z
=
, h, q)"0. (38)
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The surface vorticity is determined by inverting equations (28a,b); this leads to the following
expression:

u (0, h, q)"
1

M2
0
G
1

2
s
0
(0, q)#

=
+
n/1

[r
n
(0, q) sin nh#s

n
(0, q) cos nh)]H. (38)

The integration procedure is initiated using the initial solution (22) at q"0. The use of this
initial solution is essential for obtaining accurate results at small time. The use of a potential
#ow solution as an initial condition at q"0 has been frequently adopted by many researchers;
however, this will de"nitely lead to inaccurate results following the start of the #uid motion.

We now summarize the numerical method by listing the numerical procedure. Assuming
all quantities are known at time q and wish to advance the solution to a time q#*q, we
perform the following steps (p denotes the iteration counter): (i) solve for u(p) (z, h, q#*q)
using equation (36) everywhere except on the cylinder surface (z"0); (ii) compute
r(p)
n

(z, q#*q), s(p)
n

(z, q#*q) from equations (28a, b) for zO0; (iii) calculate r(p)
n

(0, q#*q),
s(p)
n

(0, q#*q) by enforcing the integral conditions (31a)}(31c) and hence compute
u(p) (0, h, q#*q) from equation (38); (iv) solve equations (27a,b) for f (p)

n
(z, q#*q),

F(p)
n

(z, q#*q) and thus obtain W(p) (z, h, q#*q) using equation (26); and (v) repeat above
steps till convergence is reached and increment p by 1 after each complete iteration.

Step (3) indicates how the integral conditions are used in determining the surface
vorticity. It may also be necessary to subject the surface vorticity to under-relaxation in
order to obtain convergence. Convergence is reached when the di!erence between two
successive iterates of the surface vorticity, Du(p`1) (0, h, q#*q)!u(p)(0, h, q#*q)D, falls
below some speci"ed tolerance e. Typically, e"10~5 was used. It is noted that the integrals
appearing in equations (28a)}(28c) were evaluated by Filon integration in order to guaran-
tee consistent accuracy for all n. This technique bears a close resemblance to Simpson's rule
with the exception that only the unknown part of the integrand is approximated by
a parabola over three successive grid points rather than the entire integrand.

In the present calculations the maximum number of terms used in series (26) is N"25.
Checks are made for R"103 at several typical values of q to ensure that N is large enough.
This is done by increasing N and observing that the solution did not change appreciably.
Due to the impulsive start, small time steps are needed to get past the singularity at q"0.
Initially, *q"10~5 is used; as time increases the time step is gradually increased until
reaching q"0)01. The number of points in the z-direction is taken as 201 with a space step
of *z"0)06. This makes z

=
"12 which sets the outer boundary at a physical distance of

about 40 major axis lengths away for R"103 and time q"12. Thus, the boundary is
su$ciently far away so that the application of the boundary conditions (30a)}(30c) does not
a!ect the solution in the viscous region near the cylinder surface. The values of grid sizes are
to some extent chosen to be comparable with those used by D'Alessio et al. (1999), since
these were found to be satisfactory and were checked carefully. Moreover, this scheme is
tested against the results of Staniforth (1972) for the nonoscillating (i.e., purely translating)
case using similar Reynolds numbers; tests indicate that solutions are quite accurate.
Finally, we note that the numerical method described may be used to continue the solution
for increasing q in terms of the physical coordinate m when the boundary layer thickens.
However, in the present paper, only the case of R"103 is presented, and it is possible to
work in terms of the boundary-layer coordinate z over the entire range of q considered.

4. RESULTS AND DISCUSSION

Before presenting the results we "rst perform some accuracy checks on our numerical
scheme. To do this, computations were carried out for purely translating inclined elliptic
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cylinder ()"0, a"0) using the grid ¸]P"121]121 when g"n/2 with R"250,
r"0)5878. The parameter values chosen allow comparison with the numerical results of
Patel (1981) in which the Reynolds number R

c
is based on the focal distance of the ellipse

and de"ned by R
c
";(2c)/l. It is noted that R

c
"200 corresponds closely to R"250. The

variations of the vorticity at q"1 and 5 are presented only for 04h41803 due to the
symmetry and compared with the numerical solution obtained by Patel (1981) in Figure 3.
Patel's numerical solution uses a potential #ow solution as an initial condition whereas the
present analysis uses the initial condition (22) obtained from the exact solution of full
Navier}Stokes equations at q"0. The agreement is found to be good and improves for
q"5 as the solution becomes more or less independent of the initial solution with the
increase in time. Moreover, our numerical procedure for the purely translating case (X"0,
a"0) when g"n/12 with R"6250, r"0)6 has been tested against the results of
Staniforth (1972). In Figures 4(a) and 4(b) time variations of the drag and lift coe$cients,
C

D
and C

L
are displayed, respectively, using three di!erent grid types: a "ne grid having

¸]P"161]161, an intermediate grid with ¸]P"121]121 and a coarse grid of
¸]P"81]81 to demonstrate convergence of present computations. Figure 4(a) illustrates
very good agreement with C

D
and shows little dependence on the grid used while Figure 4(b)

reveals that the computation of C
L

does show some dependence on grid size. These
diagrams also show Staniforth's results using both a numerical procedure and a series
solution which is valid for small periods of time. The results of the present study agree well
with those of Staniforth and the series solution for C

L
departs from the numerical solution

as time increases, as expected. It is noted that the cases and times considered in this study
when R"103, X"n and r"0)5 the computations are carried out using a "ner grid in the
z direction given by ¸]P"201]121 to ensure that the outer boundary is placed far
enough for larger values of time. Figures 5(a) and 5(b) show the calculated drag and lift
coe$cients for the case of R"103, X"n, r"0)5 : a"0)5 and g"n/4 using three di!erent
outer boundary locations where z

=
"8, 10, 12. This numerical experimentation indicates
Figure 3. Comparison between the surface vorticity distribution obtained from the present study using the grid
¸]P"121]121 and that obtained by Patel for the case of R"250, )"0, r"0)5878, g"n/2 and a"1)0. For
q"1)0: **, present; d, Patel; for q"5)0: - - -, present; s, Patel.



Figure 4. Variation of (a) drag coe$cient and (b) lift coe$cient with time for the case of R"6250, X"0,
r"0)6, g"n/12 and a"1)0. The present study using grids: ¸]P"161]161 (solid line), ¸]P"81]81 (dotted
line), ¸]P"121]121 (dashed line). Staniforth's solution using: a numerical procedure (crosses) and a time-series
solution (circles).
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that there is essentially no change in going from z
=
"10 to 12; for the cases and times

considered in this paper, z
=
"12 is a reliable outer boundary location for obtaining

a highly accurate solution. Furthermore, this choice of z
=

ensures that vorticity does not
reach the outer boundary for the cases and times presented in this study. Thus, the
application of the far-"eld boundary conditions (11) and (12) do not impose any unrealistic
condition on the solution scheme. We point out that at q"0 both C

D
and C

L
are in"nite in

magnitude due to the fact that the cylinder experiences in"nite acceleration at that time and



Figure 5. Variation of (a) drag coe$cient and (b) lift coe$cient with outer boundary location for the case of
R"103, X"n, r"0)5, g"n/4 and a"0)5: - - -, z

=
"8; 2, z

=
"10; **, z

=
"12.
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then they both decrease rapidly. For this reason C
D

and C
L

are both plotted starting from
q"0)01 in Figures 4 and 5.

The numerical results are grouped in two cases (i) g"n/4 and (ii) a"0)5 with R"103,
X"n and r"0)5 to investigate e!ects of angle of inclination g and of the velocity ratio a,
respectively. In the case of g"n/4 the problem is solved for two values of the velocity ratio,
a"0)5 and 1)0. On the other hand, the case of a"0)5 is investigated for g"n/4 and n/2.
The results are presented in the form of streamline patterns as well as the variations of the
drag and lift coe$cients with time. If ¸ and D are the lift and drag on the cylinder, the total
drag, C

D
, and total lift, C

L
, coe$cients are de"ned by C

D
"D/o;2a and C

L
"¸/o;2a,
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respectively. The drag and lift coe$cients can be obtained from

C
D
"C

2sinh m
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R P
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0
) sin (Xq), (40)

where the "rst and the third integrals in each gives the coe$cient due to the pressure,
C

DP
and C

LP
and the second and the fourth that due to friction, C

DF
and C

LF
. We note that

the "fth term of C
L

is the inviscid lift coe$cient due to the accelerating imposed #ow which
would have been exerted on the #uid displaced by the cylinder [see Okajima et al. (1975) for
the detailed derivation of the above formulas].

4.1. STREAMLINE PATTERNS AND FORCE COEFFICIENTS AT R"103, )"n AND r"0.5
WHEN g"n/4

To discuss the e!ect of the velocity ratio on the vortex patterns and force coe$cients, the
#ow is calculated with a"0)5 and 1)0. Since all cases considered have f"0)5 or
¹,1/f"2 as the period of cylinder oscillation, a complete cycle consists of the following
four stages: at q"0 the ellipse starts to oscillate with its maximum upward velocity and at
q"0.5 the ellipse reaches its maximum upward displacement and is in an instantaneous
state of rest; at q"1 the ellipse is in its equilibrium position and attains maximum velocity
downward; at q"1)5 the ellipse is at its maximum downward displacement and is again in
an instantaneous state of rest; and "nally at q"2 the ellipse is in its starting position and
this pattern repeats itself.

Figure 6 shows 15 snap shots of the #ow "eld for the case of a"0)5 for the time interval
64q412. This gives the details of the #ow "eld structure during three complete cycles of
oscillation following the "rst three cycles of oscillation. These plots, as seen in the moving
reference frame of the cylinder, illustrate how the oncoming #ow direction (from right to
left) appears to periodically rotate. At even times it appears to approach the cylinder from
above while at odd times it approaches the cylinder from below. At half times (i.e., q"6)5,
7)5, 10)5, 11)5) it appears to approach the cylinder horizontally since at these times the
cylinder is momentarily at rest. During the "rst three cycles when 0(q(6 (not shown
here), the usual formations and detachments of upper (counterclockwise) and lower (clock-
wise) vortex pairs take place except at about q"4. An interesting phenomenon occurs at
q"4: the two corotating vortex pairs are shed away to form adjacent vortices of the same
sign coalescence. Figure 6(a}j) shows 10 snapshots of the #ow covering the fourth complete
cycle. During the interval 64q46)5 the counterclockwise vortex pair which was shed in
the third cycle joins the counterclockwise vortex pair formed in the fourth cycle. With the
increase of time these vortices become weak and move downstream [see Figure 6(f, g)] and
fade away at q"7 [Figure 6(h)]. In the time interval 74q411)5 no corotating adjacent
vortex pairs appear but in the middle of the last quarter of the sixth cycle when q"11)5
[Figure 6(n)], we once again observe shedding of adjacent counterclockwise vortex pair
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from the upper half of the cylinder. The vortices in the near wake are simply the result of one
vortex shedding in each half cycle. This is the classical mode of single-vortex-shedding in
each half-cycle leading to the formation of a KaH rmaH n street and the vortices in the near
wake are shed at the rate of oscillation experienced by the cylinder.

For the higher velocity ratio a"1)0, the computations are also carried out over six
complete cycles. Figure 7(a}k) illustrates the #ow for this case at 11 instants in time during the
sixth cycle of oscillation. In this case, the #ow appears to approach the cylinder along the
major axis at even times, or along the minor axis at odd times, and horizontally at half times.
Since the maximum oscillation speed is the same as the translational speed in this case, the
oncoming #ow appears to approach the cylinder at an angle of n/4 with the horizontal which
exactly matches the inclination. Also, the streamlines are packed closer together here than in
the case of a"0)5. The explanation for this is that the speed of the oncoming #ow is greater
for a"1)0 than it is for a"0)5 and therefore results in streamlines spaced closer together. In
the sixth cycle the near-wake structure is quite di!erent from the ones obtained in the
previous "ve cycles. During the interval 11)354q411)5 we observe a double counter
rotating vortex pair [see Figure 7(f )]. With the increase of time this double vortex pair splits
up, and one of them joins with two upper vortex pairs to form a triple corotating vortex pair
of the same sign coalescence at q"11)55 [Figure 7(h)]. Also, two corotating (clockwise)
vortices join to form a double vortex pair in the very near-wake of the cylinder [Figure
7(g, h)]. Both double and triple corotating vortex pairs fade away at q"11)6.
Figure 6. Instantaneous streamlines of the #ow for R"103, X"n, r"0)5, g"n/4 and a"0)5: (a) q"6, (b)
6)25, (c) 6)35, (d) 6)45, (e) 6)5, (f ) 6)55, (g) 6)6, (h) 7, (i) 7)5, ( j) 8, (k) 10, (l) 10)5, (m) 11, (n) 11)5 and (o) 12.



Figure 6. Continued.
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It may be noted that this unusual feature in the wake, that is the presence of adjacent
corotating vortices, was not reported in the elliptic cylinder cases previously but was
reported in the accelerated circular cylinder case (Badr et al. 1996) and a periodic repetition
of the phenomenon was recently reported by Dennis et al. (2000) in the rotationally
oscillating and translating circular cylinder case. The fact that there is an unusual feature of
this kind, production of double or triple corotating vortex pairs, in the near wake in an
oscillating elliptic cylinder case is one of the essentially new contributions of our work. This
kind of vortex pair interaction in the near-wake might be due to the oscillatory motion of
the cylinder which tends to attract the two or three vortex pairs shedding away from the
cylinder to each other, thus slowing down their convection further downstream. It is noted
Figure 7. Instantaneous streamlines of the #ow for R"103, X"n, r"0)5, g"n/4 and a"1)0: (a) q"10, (b)
10)5, (c) 11, (d) 11)25, (e) 11)35, (f ) 11)45, (g) 11)5, (h) 11)55, (i) 11)6, ( j) 11)75 and (k) 12.



Figure 7. Continued.
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that this unusual feature in the near-wake, the presence of two corotating vortices, was also
reported in the experimental work by OG ngoK ren & Rockwell (1988, p. 215) in the cases of
circular- and triangular-cross-section cylinders subject to controlled oscillations in a trans-
verse direction to the incident #ow.

Figures 8 and 9 show the variations of drag and lift coe$cients when a"0)5 and 1)0.
These "gures indicate the periodic variation of the #ow "eld associated with vortex
shedding. It appears that, the #uctuations in these coe$cients are nearly periodic having
a frequency equal to that of the forcing frequency of the cylinder and out of phase with each
other. For both velocity ratios C

D
and C

L
reaches a maximum and a minimum value in the

full cycle of the oscillation. It is noted that maximum values for C
L

are attained near zero
position of the cylinder during the upward and downward motion of the cylinder. The
values of both C

D
and C

L
tend to be larger as the velocity ratio increases from a"0)5 to 1)0

showing the e!ect of the oscillation on C
D

and C
L

when g"n/4.

4.2 STREAMLINE PATTERNS AND FORCE COEFFICIENTS AT R"103, X"n AND r"0)5
WHEN a"0)5

To discuss the e!ect of the angle of inclination on the vortex patterns and force coe$cients,
the #ow is calculated at g"n/4 and n/2. The results for the case of g"n/4 are presented in



Figure 8. Variation of the total drag and lift coe$cients, C
D

and C
L
, with q at R"103, X"n, r"0)5, g"n/4

and a"0)5: **, C
D
; ---, C

L
.

Figure 9. Variation of the total drag and lift coe$cients, C
D

and C
L
, with q at R"103, )"n, r"0)5, g"n/4

and a"1.0: **, C
D
; - - -, C

L
.
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Section 4.1(see Figures 6 and 8). The time variation of the streamline pattern for the case
g"n/2 is shown in Figure 10(a}k) for selected values of q between q"2 and 16.
Figure 10(a) shows the streamlines when the oscillatory velocity is zero. This "gure shows
a pair of symmetric vortices in the regions 9034h41803 and 18004h42703. After
a while, this vortex pair detaches and moves downstream, initiating the alternate shedding
process. The interval between q"14 and 16 represents the eighth complete oscillation cycle
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following the start of the motion. Figure 10(g, i, k) represents the situation at the beginning,
middle and end of the oscillation. On the other hand, Figure 10(h, j) represents the times at
which the oscillatory motion comes to a complete rest. Figure 10 exhibits a single symmetri-
cal mode of vortex formation: the streamline patterns show alternate, out-of-phase shedding
of vortices from either side of the cylinder over an oscillation cycle; this is the classical mode
of vortex shedding leading to formation of the KaH rmaH n street. The repetitive nature of the
#ow "eld in the near-wake can be observed from mirror image resemblances between the
diagrams obtained in the last oscillation cycle for q"14 and 15; q"14)5 and 15)5; q"15
and 16 [see Figure 10(g}k)]. A check on the periodicity of the structure of the #ow can be
also performed by comparing the streamline patterns at times approximately one complete
period apart: for example, the streamline patterns at q"14 and 16 con"rm almost exact
periodic variations of the #ow "eld in the near-wake as do streamline patterns at q"6 and
Figure 10. Instantaneous streamlines of the #ow for R"103, )"n, r"0)5, a"0)5 and g"n/2: (a) q"2, (b) 4,
(c) 4)5, (d) 5, (e) 5.5, (f ) 6, (g) 14, (h) 14)5, (i) 15, ( j) 15)5 and (k) 16.



Figure 10. Continued.
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8. Thus, the #ow has almost settled down to a truly periodic state within only a few cycles of
the oscillation.

Comparison of these "gures with the corresponding ones in the case of g"n/4 indicates
that although the vortices are the result of single vortex shedding in each half cycle of the
oscillation, the near-wake structure is drastically di!erent from the ones obtained in the case
of g"n/2 and does not involve adjacent corotating coalescence in the case of g"n/2
unlike the case of g"n/4. The near-wake structure becomes much more organized and
periodic as g increases from n/4 to n/2. Lastly, the vortex shedding process observed from
the streamline patterns in Figure 10 for the case where g"n/2 is more predictable. Each
oscillation of the ellipse appears to provoke vortex shedding from both tips with one being
shed from the top during the "rst half of the cycle and another being shed from the bottom
during the second half of the cycle. The vortices are probably shed at that part of the
vibration cycle when the cylinder is near its maximum displacement.These counter-rotating
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vortices grow to produce an almost symmetric pattern at times when the cylinder is
momentarily at rest. During the next oscillation these shed vortices are then forced
downstream as new ones are formed. Thus, an obvious e!ect of oscillation is to induce
vortex shedding from the tips of the ellipse. This e!ect superposes itself on the usual vortex
development around a purely translating elliptic cylinder. The ratio of the transverse to the
longitudal spacing between vortices in the wake decreases slightly as the angle of inclination
increases from n/4 to n/2 when a"0)5. This is consistent with the experimental "ndings of
Modi & Wiland (1970) in the case of stationary elliptic cylinder since the dominant velocity
is the translational velocity when a"0)5.

Figure 11 shows the time variation of the drag and lift coe$cients. Here, the lift coe$cient
varies at the cylinder oscillation frequency, and drag coe$cient oscillates at twice the
cylinder oscillation frequency after a transition period when q"4)0 unlike the case of
g"n/4 when a"0)5. This feature, which is apparently a consequence of the geometry of
the vortex street, is consistent with the experimental observations with no oscillation. It can
be also seen that the increase of angle of inclination makes amplitude of the #uctuating lift
force, C

L
, smaller. In a recent numerical work of Badr et al. (2000) the two-dimensional

unsteady viscous #ow over an inclined elliptic cylinder placed in a uniform stream (X"0,
a"0) is investigated numerically. Their calculated results for the case of R"103, r"0)6
indicates that C

D
curve shows nonperiodic behaviour in the case g"0; whereas, in the case

of g"303, the C
D

curve #uctuates at twice the vortex shedding frequency after the initial
transition period. We note that for g"n/2 for a stationary cylinder C

L
"0 due to

symmetry. For the oscillating case, during instants when the cylinder reaches its maximum
upward and downward displacements the cylinder is temporarily at rest, and therefore the
#ow should be momentarily symmetric. This agrees with the computed #ow observed in the
streamline patterns of "gure 10. The lift coe$cient, C

L
, is, however, not zero at these instants

due to the inviscid lift imposed by the accelerating motion [see equation (40)]. The #ow
patterns and C

L
are nearly periodic, and when averaged over a complete cycle C

L
"0. This

is consistent with intuition. The above argument does not apply when g"n/4 since the #ow
is asymmetric and therefore much more complicated.
Figure 11. Variation of the total drag and lift coe$cients: C
D

and C
L

with q at R"103, X"n, r"0)5, a"0)5
and g"n/2: **, C

L
; - ) ) -, C

D
.
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5. CONCLUSIONS

An implicit time-marching scheme was utilized to analyse the near-wake structure behind
an inclined elliptic cylinder as well as the #uid forces acting on a cylinder, where the cylinder
was subject to rectilinear oscillations in a transverse direction to the oncoming #ow. The
numerical scheme was tested by modifying it to solve the special case of pure translation.
The e!ects of the velocity ratio and the angle of inclination are discussed. In the case of
g"n/4 the results are obtained in a range of velocity ratio 0)54a41)0 at the Reynolds
number of R"103 and the forcing Strouhal number X"n when a"1)0. An interesting
phenomenon occurs in the case of g"n/4 when a"0)5 and 1)0. In the case of a"0)5 the
two corotating vortex pairs are shed away from the cylinder to form two adjacent
corotating vortices in the near-wake region whereas in the case of r"0)5 both double and
triple corotating vortex pairs occur in the cylinder wake. This seems to delay the develop-
ment of the periodic #ow pattern in the near-wake. Force coe$cients show periodic
behaviour when a"0)5 and 1)0 with a frequency equal to that of the forcing frequency of
the cylinder and they are out of phase with each other.

In the case of a"0)5 the results are obtained at two values of angle of inclination g"n/4
and n/2 in the case of the Reynolds number of R"103 and the forcing Strouhal number
X"n when r"0)5. It is found that for the cases of n/2 the near-wake does not involve
adjacent corotating vortices.

In all cases considered in this study C
L

curve oscillates with the forcing frequency of the
cylinder whereas a switch over in the nature of the #uctuations of the drag coe$cient is
observed with the increase of angle of inclination.

In summary, therefore, we have observed some new #uid mechanical phenomena in this
type of #ow, particularly with regard to the facts about the production of the double or
triple corotating vortex shedding for certain values of g and a and the behaviour of the drag
coe$cient as g increases.
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